Home
Class 12
MATHS
Find (dy)/(dx) if x=cos theta - cos 2 ...

Find `(dy)/(dx)` if `x=cos theta - cos 2 theta`
`and" "y = sin theta - sin 2theta`

Text Solution

Verified by Experts

The correct Answer is:
`(cos theta -2 cos 2 theta)/(2 sin 2 theta - sin theta)`

The given equations are `x=cos theta - cos 2 theta`
`and" "y = sin theta - sin 2theta`
`"Then, "(dx)/(d""theta)=-sin theta - (-2 sin 2theta)=2 sin 2 theta- sin theta`
`"And "(dy)/(d""theta)=cos theta -2 cos 2theta`
`therefore" "(dy)/(dx)=(dy//d""theta)/(dx//d""theta)=(cos theta-2 cos 2theta)/(2 sin 2theta- sin theta)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x= 2 cos theta - cos 2theta and y= 2sin theta - sin 2theta.

Find (dy)/(dx), " if "x= a cos theta, y= a sin theta .

If sin theta = cos theta , what is sin theta - cos theta = ?

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx) . x= a (cos theta+ theta sin theta), y= a (sin theta-theta cos theta) .

Eliminate theta : x = a ( cos theta + cos 2 theta), y = b ( sin theta + sin 2 theta).

If x = sin theta + cos theta sin 2 theta " and " y = cos theta + sin theta sin 2 theta,"prove that " (x+y)^(2//3) + (x-y)^(2//3) = 2

If x=-a cos theta and y= a sin theta , find (dy)/(dx) .

If x+a= a(2 cos theta-cos 2 theta) and y= a(2 sin theta- sin 2 theta) ,show that (x^(2)+y^(2)+2ax)^(2)=4a^(2)(x^(2)+y^(2)) .

sin4theta cos 2theta = cos5theta sin theta