Home
Class 12
MATHS
Find dy/dx when x=alogt and y=bsint....

Find `dy/dx` when `x=alogt and y=bsint.`

Text Solution

Verified by Experts

The correct Answer is:
1

`x=a[cos t + log tan""(t)/(2)]and y= a sin t`
Differentiating w.r.t. t, we get
`=a[-sin t + (1)/(tan t//2)sec^(2)""(t)/(2)xx(1)/(2)]`
`(dx)/(dt)=a[-sin t+(1)/(2 sin (t//2)cos (t//2))]`
`=a[-sin t +(t)/(sin t)] and (dy)/(dt)=a cos t`
`therefore" "(dy)/(dx)=(dy//dt)/(dx//dt)=(a cos t)/((a cos^(2)t)/(sin t))=tan t`
`"At "t=pi//4, (dy)/(dx)=1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx where y=4^x

Find (dy)/(dx) , when y=log|x|

Find (dy)/(dx) when : xy=tan(x+y)

Find (dy)/(dx) , when y= log f(x)

Find dy/dx when x^(logx) + (sinx)^x + 15 x

Find (dy)/(dx) when : x^(y)=y^(x)

Find (dy)/(dx) when : y^(y)=sin x

Find (dy)/(dx) , when y=cos^(3) log(x tan sqrt(x))

Find (dy)/(dx) , when y=log_(cosx)x

Find dy/dx when x^(siny) + y ^(sinx) = 1