Home
Class 12
MATHS
"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(...

`"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|,`
where c is constant, then find `underset(xrarr0)lim(g(x))/(x).`

Text Solution

Verified by Experts

The correct Answer is:
0

`g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|`
`therefore" "g(0)=0`
`therefore" "underset(xrarr0)lim(g(x))/(x)" "((0)/(0)from)`
`=underset(xrarr0)lim(g'(x))/(1)" (using L' Hopital rule)"`
`g'(0)`
`"Now, "g'(x)|{:(f'(x+c),f'(x+2c),f'(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|`
`therefore" "g'(0)=|{:(f'(c),f'(2c),f'(2c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|=0`
`therefore" "underset(xrarr0)lim(g(x))/(x)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|, where c is constant, then find lim_(xrarr0) (g(x))/(x).

If g(x)=|(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c))|, where c is a constant, then lim_(x rarr0)(g(x))/(x) is equal to

If f(x) is continuous and f(9/2) = 2/9, then find lim_(xrarr0)9f((1-cos3x)/x^2) .

If f(x)=ax^(2)+bx+c , show that , underset(hrarr0)"lim"(f(x+h)-f(x))/(h)=2ax+b

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

intcos(logx)dx=F(x)+c , where c is an arbitaray constant. Here F(x)=

intcos(logx)dx=F(x)+c , where c is an arbitrary constant. Here F(x) =

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

If f(x)=mx+c (m, c are constant), f(0)=1, f'(0) = 1 , then find the value of f(2)

Give f(x) = a + b(x - 10) + c(x - 1)(x - 2), f(1) = 7, f(2) = 17 and f(3) = 35, determine the coefficients a, b and c