Home
Class 12
MATHS
Let f be a function such that f(x+y)=f(x...

Let `f` be a function such that `f(x+y)=f(x)+f(y)` for all `xa n dya n df(x)=(2x^2+3x)g(x)` for all`x ,` where `g(x)` is continuous and `g(0)=3.` Then find `f^(prime)(x)dot`

Text Solution

Verified by Experts

The correct Answer is:
9

`f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)`
`=underset(hrarr0)lim(f(x)+f(h)-f(x))/(h)`
`=underset(hrarr0)lim(f(h))/(h)`
`=underset(hrarr0)lim((2h^(2)+3h)g(h))/(h)`
`=underset(hrarr0)lim(2h+3)g(h)`
`=(0+3)g(0)`
`=3g(0)`
`=3xx3`
`=9`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f be a function such that f(x+y)=f(x)+f(y) for all x and y and f(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

Let f be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x^3phi(x) for all x and y when phi (x) is a continuous function then f''(x) is equal to

If f'(x) exists for all x inR and g(x)=f(x)-(f(x))^2+(f(x))^3forallx inR , then

If f(x+y)=f(x)f(y) for all x, y and f(x)=1+xg(x) , where lim_(xto0)g(x)=1 . Show that f'(x)=f(x) .

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

If f(x + y) = f(x)f(y) for all x, y and and f(x) = 1 + x g(x), where lim_(xrarr0)g(x)=1 ) , show that f'(x) = f(x).

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)+f(y) for all xa n dydot If the function f(x) is continuous at x=0, show that f(x) is continuous for all xdot

If f(x+y) = f(x) * f(y) for all real x and y and f(5)=2,f'(0) = 3 , find f'(5).