Home
Class 12
MATHS
Let g: RvecR be a differentiable functio...

Let `g: RvecR` be a differentiable function satisfying `g(x)=g(y)g(x-y)AAx , y in R` and `g^(prime)(0)=aa n dg^(prime)(3)=bdot` Then find the value of `g^(prime)(-3)dot`

Text Solution

Verified by Experts

The correct Answer is:
`(a^(2))/(b)`

`g(x)=g(y)g(x-y)`
Differentiating w.r.t. x, keeping y constant,
`g'(x)=g(y)[g'(x-y)]`
Put y=x. Then,
`g'(x)=g(x)cdotg'(0)=acdotg(x)`
`"or "g(x)=ae^(x)" "[becauseg(0)=1]`
`"or "g'(x)=ae^(x),g'(3)=ae^(3)=b`
`"or "g'(-3)=ae^(-3)=(a^(2))/(b)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of lim_(x->0)(((dy)/(dz)))/x

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

Let f: RvecR be a function satisfying condition f(x+y^3)=f(x)+[f(y)]^3fora l lx ,y in Rdot If f^(prime)(0)geq0, find f(10)dot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(g(x)))=x for all x in R . Then, find the value of h'(1).

Let g(x) be a function such that g(a+b)=g(a)dotg(b)AAa , b in Rdot If zero is not an element in the range of g, then find the value of g(x)dotg(-x)dot

Let f(x)a n dg(x) be two differentiable functions in R a n d f(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

Let f(x)a n dg(x) be differentiable for 0lt=xlt=2 such that f(0)=2,g(0)=1,a n df(2)=8. Let there exist a real number c in [0,2] such that f^(prime)(c)=3g^(prime)(c)dot Then find the value of g(2)dot

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot