Home
Class 12
MATHS
A particle acted by constant forces 4 ...

A particle acted by constant forces `4 hat i+ hat j-3 hat k and 3 hat i+ hat 9j- hat k` is displaced from point ` hat i+2 hat j+3 hat k` to point `5 hat i+4 hat j+ hat kdot` find the total work done by the forces in SI units.

Text Solution

Verified by Experts

`Here vecF=vecF_(1)+vecF_(2)=(4hati+hatj-3hatk)+(3hati+hatj-hatk)=7hati+2hatj-4hatk`
`and vecd=vecd_(2)-vecd_(1)(5hati+4hatj+hatk)-(hati+2hatj+3hatk)=4hati+2hatj-2hatk`
Work done = `vecF.vecd`
`=(7hati+2hatj-4hatk).(4hati+2hatj-2hatk)`
= (7) (4) + (2) (2) + (-4) (-2)
= 28 + 4 +8 = 40 units.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

If points hat i+ hat j , hat i- hat j and p hat i+q hat j+r hat k are collinear, then

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

Find | -> axx -> b|, if -> a=2 hat i+ hat j+3 hat k and -> b=3 hat i+5 hat j-2 hat k .

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

if vec a= 5 hat i -hat j -3 hat k and vec b=hat i+3 hat j - 5 hat k , Find vec a . vec b =?

Find the projection of vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat kdot