Home
Class 12
MATHS
A , B , Ca n dD are any four points in t...

`A , B , Ca n dD` are any four points in the space, then prove that `| vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4` (area of ` A B C` ).

Text Solution

Verified by Experts

Let P.V of A,B, C d and D be `veca, vecb,vecc and vec0` , respectively. Then `vec(AB)xxvec(CD)=(vecb-veca)xx(-vecc), vec(BC)xxvec(AD)=(vecc-vecb)xx(-veca)`
`vec(CA)xxvec(BD)=(veca-vecc)xx(-vecb)`
`vec(AB)xxvec(CD)+vec(BC)xxvec(AD)+vec(CA)xxvec(BD)`
`veccxxvecb+vecaxxvecc+vecaxxvecc+vecbxxveca-vecaxxvecb+veccxxvecb`
`2(veccxxvecb+ vecbxxvecbxxveca+vecaxxvecc)`
`2(veccxx(vecb-veca)-vecaxx(vecb-veca))`
`= 1(vec(AC)xxvec(AB))`
`|vec(AB)xxvec(CD)+vec(BC)xxvec(AD)+vec(CA)xxvec(BD)|=4|1/2(vec(AC)xxvec(AB))|=4triangleABC`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=4(Area \ of triangle ABC).

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Prove that [[ vec a+ vec b, vec b+ vec c, vec c+ vec a]]=2[ [vec a, vec b, vec c]]dot

ABCDE is a pentagon. Prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

Let vec a , vec b ,a n d vec c be non-coplanar vectors and let the equation vec a^' , vec b^' , vec c ' are reciprocal system of vector vec a , vec b , vec c , then prove that vec axx vec a^'+ vec bxx vec b^'+ vec cxx vec c ' is a null vector.

If vec ba n d vec c are two-noncollinear vectors such that vec a||( vec bxx vec c), then prove that ( vec axx vec b) . ( vec axx vec c) is equal to | vec a|^2( vec bdot vec c)dot

Let vec a , vec b ,a n d vec ca n d vec a^' , vec b^' , vec c ' are reciprocal system of vectors, then prove that vec a^'xx vec b^'+ vec b^'xx vec c^'+ vec c^'xx vec a^'=( vec a+ vec b+ vec c)/([ vec a vec b vec c]) .