Home
Class 12
MATHS
If veca,vecb,vecc and vecd are the posit...

If `veca,vecb,vecc and vecd` are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that `(|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc))`=0

Text Solution

Verified by Experts

`(|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))=(|(veca-vecd)xx(vecb-veca)|)/((vecb-veca).(vecd-veca))`
`= (|veca-vecd||vecb-veca|sinA)/(|vecb-veca||vecd-veca|cosA)`
`tanA`
`Also (|vecbxxvecc+veccxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))=(|(vecb-vecc)xx(vecc-vecd)|)/((vecb-veca).(vecd-vecc))`
`=(|vecb-vecc||vecc-vecd|sinC)/(|vecb-vecc|.|vecd-vecc|cosA)`
`tan C`
As it is a cycle quadrilateral, we have
`A = 180^(@)-C`
`tan A=tan(180^(@)-C)`
`tan A + tan C =0`
`(|vecaxx vecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

For any four vectors prove that (vecbxxvecc).(veca xxvecd)+(vecc xxveca).(vecbxxvecd)+(vecaxxvecb).(veccxxvecd)=0

If veca, vecb, vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecb-vecc)ne 0

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))