Home
Class 12
MATHS
The position vectors of the vertices ...

The position vectors of the vertices of a quadrilateral with `A` as origin are `B( vec b),D( vec d)a n dC(l vec b+m vec d)dot` Prove that the area of the quadrialateral is `1/2(l+m)| vec bxx vec d|dot`

Text Solution

Verified by Experts

Area of quandrilateral is `1/2|vec(AC)xxvec(BD)|=1/2|(lvecb+mvecd)xx(vecd-vecb)|`
`= 1/2 |lvecbxxvecd - mvecd xxvecb|`
`=1/2 ( l+m)|vecbxxvecd|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/((vec b- vec a).(vec d- vec a)) + (| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/((vec b- vec c).( vec d- vec c))=0dot

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vec d ⋅ vec a = vec d ⋅ vec b = vec d ⋅ vec c a n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot

Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

If vec a , vec b , vec c , vec d are the position vector of point A , B , C and D , respectively referred to the same origin O such that no three of these point are collinear and vec a + vec c = vec b + vec d , than prove that quadrilateral A B C D is a parallelogram.

If O A B C is a tetrahedron where O is the origin and A ,B ,a n dC are the other three vertices with position vectors, vec a , vec b ,a n d vec c respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector (a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c]) .

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot