Home
Class 12
MATHS
Prove that [veclvecmvecn][vecavecbvecc]=...

Prove that `[veclvecmvecn][vecavecbvecc]=|{:(vecl.veca,vecl.vecb,vecl.vecc),(vecm.veca,vecm.vecb,vecm.vecc),(vecn.veca,vecn.vecb,vecn.vecc):}|`

Text Solution

Verified by Experts

Let `vecl=l_(1)hati+l_(2)hatj+l_(3)hatk,vecm=m_(1)hati+m_(2)hatj+m_(3)hatk andvecn=n_(1)hati+n_(2)hatj+n_(3)hatk`
`veca=a_(1)hati+a_(2)hatj=a_(3)hatk,vecb=b_(1)hati+b_(2)hatj+b_(3)hatk nandvecc=c_(1)hati+c_(2)hatj+c_(3)hatk`
`vecl.veca=l_(1)a_(1)+l_(2)a_(2)+l_(3)a_(3)=suml_(1)a_(1)`
similarly `vecl.vecb=suml_(1)b_(1).etc.`
`[veclvecmvecn][vecavecbvecc]=|{:(l_(1),l_(2),l_(3)),(m_(1),m_(2),m_(3)),(n_(1),n_(2),n_(3)):}||{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|`
`=|{:(suml_(1)a_(1),suml_(1)b_(1),suml_(1)c_(1)),(summ_(1)a_(1),summ_(2)b_(1),summ_(1)c_(1)),(sumn_(1)a_(1),sumn_(1)b_(1),sumn_(1)c_(1)):}|`
`=|{:(vecl.veca,vecl.vecb,veca.vecc),(vecm.veca,vecm.vecb,vecm.vecc),(vecn.veca,vecn.vecb,vecn.vecc):}|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

prove that if [vecl vecm vecn] are three non-coplanar vectors, then [veclvecm vecn](vecaxxvecb)= |{:(vecl.veca,vecl.vecb,vecl),(vecm.veca,vecm.vecb,vecm),(vecn.veca,vecn.vecb,vecn):}|

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc)) =0

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])