Home
Class 12
MATHS
i. If vec a , vec b and vec c are ...

i. If `vec a , vec b and vec c` are non-coplanar vectors, prove that vectors `3veca -7vecb -4 vecc ,3 veca -2vecb + vecc ` and ` veca + vecb +2 vecc ` are coplanar.

Text Solution

Verified by Experts

Given `[veca vecb vecc] ne 0 as veca, vecb, vecc` are non- coplanar. Also there does not exist any linear relation between them because if any such relation extists, then they would be coplanar.
`Let " " A=x(vecbxxvecc)+y(vecc xxveca) + z (vecaxxvecb),`
`where " " x=veca.vecd,y=vecb.vecd,x =vecc.vecd`
we have to find value of modulus of `vecA i.e. |vecA|` which is independent of `vecd`.
Multiplying both sides scalarly by ` veca,vecb and vecc`. and knowing that scalar triple product is zero when two vectors are equal, we get
`vecA.veca=x[vecavecbvecc]+0`
putting for x, we get
`(veca.vecd)[vecavecb vecc]=vecA.veca`
similarly , we have
`(vecb.vecd)[vecavecbvecc]=vecA.vecb`
`(vecc.vecd)[veca vecbvecc]=vecA.vecc`
Adding the above relations , we get
`[(veca+vecb+vecc).vecd][vecavecbvecc]=vecA.(veca+vecb+vecc)`
`(veca+vecb+vecc).[vecd[veca vecbvecc]-A vecA=0`
since `veca vecb and vecc` are non-coplanar, `veca+vecb+vecc ne 0` because otherwise any one is expressible as a linear combination of other two, Hence,
`[veca vecbvecc] vecd=vecA`
`|vecA|=|[vecavecbvecc]|as vecd` is a unit vector.
It is independent of `vecd`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If vec a , vec b and vec c are any three non-coplanar vectors, then prove that points are collinear: veca+ vecb+vecc , 4veca+3vecb ,10veca+7vec b-2vecc .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If veca xx vecb + vecb xx vecc + vecc xx veca = 0 . Show that the vectors veca, vecb, vecc are coplanar.

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca , vecb , vecc are three mutually perpendicular unit vectors, then prove that ∣ ​ veca + vecb + vecc | ​ = sqrt3 ​