Home
Class 12
MATHS
Let hat a , hat b ,and hat c be the no...

Let ` hat a , hat b` ,and `hat c` be the non-coplanar unit vectors. The angle between ` hat b` and `hat c` is `alpha` , between ` hat c` and ` hat a` is `beta` and between ` hat a` and `hat b` is `gamma` . If `A( hat a cosalpha, 0),B( hat bcosbeta, 0)` and `C( hat c cosgamma, 0),` then show that in triangle `AB C ,` `(|hat axx(hat bxx hat c)|)/(sinA)=(|hat bxx(hat cxx hat a)|)/(sinB)=(|hat cxx(hat axx hat b)|)/(sinC)`

Text Solution

Verified by Experts

From the sine rule, we get
`(AB)/(sin C)=(AC)/(sinB)=(BC)/(sinA)= ((AB)(BC)(CA))/(2DeltaABC)`
`BC=|vec(BC)|=|hatc cos gamma=-hatbcosbeta|=|(hata.hatb)hatc-(hatc.hata)hatb|=|(hataxx(hatbxxhatc))|`
`AC = |vec(AC)|=|hatbxx(hatcxxhata)|and AB = |vec(AB)|=hatcxx(hataxx hatb)|`
`DeltaABC=1/2|vec(BC)xxvec(BA)|`
`=1/2 |(hatc cosgamma-hatb cos beta)xx(hata cosalpha-hatbcosbeta)|`
`=1/2 |(hatc xxhata)cosalpha cosgamma+(hatbxxhatc)cosalphacosbeta+(hata xx hatb)cos beta cos alpha|`
`2DeltaABC=|sumhatn_(1)sinalphacosbeta cosgamma|`
`(|hataxx(hatbxxhatc)|)/sinA=(|hatbxx(hatcxxhata)|)/sinB=(|hatcxx(hataxxhatb)|)/sin C = (prod|hata xx(hatbxx hatc)|)/(|sum sinalpha cosbeta cosgamma hatn_(1)|)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Given unit vectors hat m , hat n and hat p such that angel between hat m and hat n is alpha and angle between hat p and( hat mxx hat n) is also alpha,then[ hat n hat p hat m]=

Find out the angle between two-vectors hat i + hat j and hat i- hat k .

If hat a , hat b ,a n d hat c are unit vectors, then | hat a-hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Let hat(a) and hat(b) be two unit vectors. If the vectors hat(c) = hat(a) + 2hat(b) and hat(d) = 5hat(a) - 4hat(b) are perpendicular to each other, than the angle between hat(a) and hat(b) is

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find the scalar product of the following pair of vectors and the angle between them : vec(a) = 2 hat (i) + 3 hat (j) - 4 hat (k) and vec(b) = hat (i) + 2 hat (j) + hat (k)

If the vector ahat i+ a hat j+ c hatk, hat i+hatk and chat i+c hat j+b hat k be coplanar, show that c^2= ab .

If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2 and theta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2 and theta_3 . a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these