Home
Class 12
MATHS
If vector vec x satisfying vec x xx ve...

If vector ` vec x` satisfying ` vec x xx vec a+( vec x . vec b) vec c= vec d` is given ` vec x=lambda vec a+ vec axx( vec axx( vec d xx vec c))/(( vec a . vec c)| vec a|^2)` , then find the value of `lambdadot`

Text Solution

Verified by Experts

`vecx xxveca=(vecx.vecb)vecc=vecd`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

For any four vectors, vec a , vec b , vec c and vec d prove that vec d.( vec axx( vec bxx( vec cxx vec d)))=( vec b. vec d)[ vec a \ vec c \ vec d] .

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .