Home
Class 12
MATHS
Let veca,vecb and vecc be a set of non- ...

Let `veca,vecb and vecc` be a set of non- coplanar vectors and `veca'vecb' and vecc'` be its reciprocal set.
prove that `veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])`

Text Solution

Verified by Experts

we have , `vecb'xxvecc'=((veccxxveca)xx(vecaxxvecb))/([vecavecbvecc]^(2))`
`({(veccxxveca).vecb}veca-{(veccxxveca).veca}vecb)/([vecavecbvecc]^(2))=([vecc vecavecb]veca-[veccvecaveca]vecb)/([veca vecbvecc]^(2))=([vecavecb vecc]veca-0)/([vecavecbvecc]^(2))=(veca)/([veca vecb vecc])`
`[veca'vecb'vecc']=veca'(vecb'xxvecc')=(vecbxxvecc)/([vecavecbvecc]).veca/([vecavecbvecc]^(2))=([veca vecbvecc])/([veca vecbvecc]^(2))=1/([vecavecbvecc])`
`(vecb'xxvecc')/([veca'vecb'vecc'])=veca`
`vecb=(vecc'xxveca')/([veca'vecb'vecc']),vecc=(veca'xxvecb')/([veca'vecb'vecc'])`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then