Home
Class 12
MATHS
If veca, vecb and vecc be three non-copl...

If `veca, vecb and vecc` be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that
`i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc`
ii. `vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'`

Text Solution

Verified by Experts

Since a vector can be expressend as a linear combination of three non-coplanar vectors, let
`vecr=xveca+yvecb+zvecc`
where, x,y and z are scalars.
Mutiplying both sides, of (i) scalarly by `veca'` we get
`vecr.veca'=xveca.veca'+yvecb.veca'+zvecc.veca'=x.1=x " " (veca.veca' =1, vecb,veca'=0 =vecc.veca')`
Similarly , multiplying both sides of (i) scalarly by `vecb' and vecc'` successively we get
`y = vecr.vecb' and z = vecr vecc'`
Putting in (i) , we get `vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc`
ii. Since `veca', vecb' and vecc'` are three non- coplanar vectors,we can take `vecr=xveca'+yvecb' +zvecc'`
Multiplying both sides of (ii) scalarly by `veca` ,we get
`vecr.veca=x(veca'.veca)+y(vecb'.veca)+z(vecc'.veca)=x " " (veca'veca=1 ,vecb'veca=0=vecc'veca)`
Similarly multiplying both sides of (i) scalarly by `vecb and vecc` successively, we get
`y = vecr. vecb and z=vecr .vecc`
Putting in (ii), we get `vecr=(vecr.veca)veca'+(vecr.vecb)vecb'+(vecr.vecc)vecc'`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca , vecb , vecc and vecd are four non-coplanar unit vectors such that vecd makes equal angles with all the three vectors veca, vecb, vecc then prove that [vecd vecavecb]=[vecd veccvecb]=[vecd veccveca]

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc