Home
Class 12
MATHS
Find intsin^(6)x cosxdx....

Find `intsin^(6)x cosxdx`.

Text Solution

Verified by Experts

[ Here, power of sin x is 5 which is an odd positive integer.
Therefore, put `z=cosx`.]
Let `z=cos x.` Then `dz= -sin x dx .` Now,
`intsin^(5)xdx int sin^(4)x sinx dx`
`=int(sin^(2)x)^(2)sinx dx`
`=int(1-cos^(2)x)^(2)sinx dx`
`=int(1-z^(2))^(2)(-dz) " " [ :' z=cosx]`
`= -int(1-2z^(2)+z^(4))dz`
`= -[z-2(z^(3))/(3)+(z^(5))/(5)]+c`
` = -z+(2)/(3)z^(3)-(z^(5))/(5)+c`
` = -cosx +(2)/(3)cos^(3)x-(cos^(5)x)/(5)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Find: intsin^5x dx

intsin^3xcos^5x dx

Find intsin^(5)x cos^(3)x dx .

Find intsin5xdx

Find int(sin^6x)/(cos^8x)dx .

Find intsin2xcos2xdx

Evaluate intsin^(5)x cos^(2)x dx

Evaluate int(sin^(6)x)/(cos^(8)x)dx

Find intsin^(-1)sqrt((x)/(a+x))dx.

Evaluate: int_0^(pi/2)sin^3x cosxdx