Home
Class 12
MATHS
Evaluate: int(x+1)/((x-1)(x+3))dx...

Evaluate: `int(x+1)/((x-1)(x+3))dx`

Text Solution

Verified by Experts

`I=int(x^(2)+1)/((x-1)^(2)(x+3))dx`
Let `int(x^(2)+1)/((x-1)^(2)(x+3))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/(x+3) " " ` (1)
or `x^(2)+1=A(x-1)(x+3)+B(x+3)+C(x-1)^(2) " " ` (2)
Putting `x-1=0`, i.e., `x=1` in equation (2), we get
`2=4B " or " B=(1)/(2).` Putting `x+3=0`,
i.e., `x= -3` in equation (2), we get `10=16C " or " C=(5)/(8).`
Equating the coefficients of `x^(2)` on both the sides of the identity of equation (2), we get
`I=A+C " or " A=1-C=1-(5)/(8)=(3)/(8)`
Substituting the values of A, B in equation (1), we get
`(x^(2)+1)/((x-1)^(2)(x+3))=(3)/(8)(1)/(x-1)+(1)/(2)(1)/((x-1)^(2))+(5)/(8)(x+3)`
or `I=(3)/(8)int(1)/(x-1)dx+(1)/(2)int(1)/((x-1)^(2))dx+(5)/(8)int(1)/(x+3)dx`
`=(3)/(8)log|x-1|-(1)/(2(x-1))+(5)/(8)log|x+3|+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2x+1)/((x-1)(x+2))dx

Evaluate: int dx/((x - 1)(x -3))

Evaluate: int(x^4)/(x-1)dx

Evaluate: int(x^2+1)/((x-1)^2(x+3))dx

Evaluate: int(x^3)/((x-1)(x-2))\ dx

Evaluate: int(2x-1)/((x-1)(x+2)(x-3))dx

Evaluate: int(x^3)/(x+1)dx

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx

Evaluate: int (dx)/((x+1)(2x+1)

Evaluate: int(x^2+1)/(x(x^2-1))dx