Home
Class 12
MATHS
Evaluate int x sin 3x dx....

Evaluate ` int x sin 3x dx`.

Text Solution

Verified by Experts

Here, both the functions, viz., `x` and `sin 3x` are easily integrable and the derivative of x is one, a less complicated function.
Therefore, we take x as the first function and `sin 3x` as the second function. Thus,
`int underset (I)(x)underset(II)(sin)3x dx`
`=x{intsin 3xdx}-int{(d)/(dx)(x)intsin 3x dx}dx`
`= -x (cos 3x)/(3)-int1 {-(cos 3x)/(3)}dx`
`= -(1)/(3)x cos 3x +(1)/(3) int cos3x dx`
`= -(1)/(3)x cos 3x +(1)/(9) sin 3x +C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int x^2 sin x dx

Evaluate : int sin^(3)x dx

Evaluate : int sin 3x sin 4x dx

Evaluate: int e^(4x)sin 3x dx

Evaluate : int 2^(3x) sin 4x dx

Evaluate : int sin^(2) 3x cos 3x dx

Evaluate : int sin x cos 3x sin 5 x dx

Evaluate : int (sqrt3 sin x - cos x)dx

Evaluate int dx/(sin x cos x)

Evaluate: int (sin x dx)/(sin^(3)x + cos^(3)x)