Home
Class 12
MATHS
int sec^(3) x dx...

`int sec^(3) x dx`

Text Solution

Verified by Experts

Let `I=int sec^(3)x dx " d"=int secx sec^(2)x dx`
`=int sqrt(1+tan^(2)x)sec^(2)x dx`
Put `tan x=z " and " sec^(2)x dx=dz`
` :. I=int sqrt(1+z^(2))dz`
`=(zsqrt (z^(2)+1))/(2)+(1)/(2)log|z+sqrt(z^(2)+1)|+C`
` =(tanx sec x)/(2)+(1)/(2)log|tanx +secx| +C`
`=(1)/(2)[secx tanx + log|secx +tanx|] +C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int sec^(3) xdx

int sin^(3) x dx

int cosec^(3)x dx

Integrate : int sec^(6) x dx

Integrate : int sec^(5) x dx

Integrate : int sec^(-1)x dx

Find the value of " int x sec^(2)x dx

int x sinx sec^(3)x dx is equal to

int (sec^(2)x dx)/(sqrt(5-sec^(2)x))

The value of int cos^(3) x dx is