Home
Class 12
MATHS
Evaluate: int(logx)/((1+logx)^2)dx...

Evaluate: `int(logx)/((1+logx)^2)dx`

Text Solution

Verified by Experts

`I=int(logx)/((1+logx)^(2))dx`
Let `logx=t. " Then " x=e^(x)`
or `dx=e^(t) dt.` Thus,
`I=int(te^(t))/((t+1)^(2))dt`
`=int e^(t)((1)/((t+1))-(1)/((t+1)^(2)))dt`
`=(e^(t))/(t+1)+c`
`=(x)/((log x+1))+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXAMPLE|18 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(log(logx)+1/((logx)^2))dx

Evalaute: int((logx-1)/(1+(logx)^2))^2dx

Integrate : int (logx)/((1+logx)^(2))dx

Evaluate: int((x+1)/x)(x+logx)^2dx

int[log(logx)+(1)/((logx)^(2))]dx

Evaluate: int((1+logx)^3)/x dx

Evaluate: int cos(logx)dx .

int_(1)^(e)(logx)^(2)dx

The value of int{(logx-1)/(1+(logx)^(2))}^(2)dx is equal to -

Evaluate : int cos(logx)dx