Home
Class 12
MATHS
Evaluate: If intcos^nxdotdx prove that I...

Evaluate: If `intcos^nxdotdx` prove that `I_n=1/n(cos^(n-1)xsinx)+((n-1)/n)I_(n-2)`

Text Solution

Verified by Experts

`I_(n)=int cos^(n)x dx`
`=cos^(n-1)x intcosx dx+(n-1)int(sin^(2)x)cos^(n-2)x dx`
`=(cos^(n-1) x sinx )+(n-1) int cos^(n-2)x(1-cos^(2)x)dx`
`=(cos^(n-1) x sinx )+(n-1) int [cos^(n-2)x-cos^(n)x]dx`
or `I_(n)+(n-1) I_(n)=(cos^(n-1)x sinx)+(n-1)(I_(n-2))`
or `I_(n)=(1)/(n)(cos^(n-1) x sin x)+((n-1)/(n))I_(n-2)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|2 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int cos^(n)x dx , prove that, I_(n)=(1)/(n)cos^(n-1)x sin x+(n-1)/(n).I_(n-2) .Hence, evaluate, int cos^(5)x dx .

If I_(n)=int sin^(n)x dx , show that, I_(n)=-(1)/(n) sin^(n-1)x cosx+(n-1)/(n).I_(n-2) . Hence, evaluate, int sin^(6)x dx .

If I_n = int tan^n x dx , then prove that I_n = (tan^(n-1) x)/(n - 1) - I_(n - 2) . Hence find int tan^7 x dx

Prove that [(n+1)//2]^n >(n !)dot

If ninNN , then by princuple of mathematical induction prove that, n*1+(n-1)*2+(n-2)*3+ . . . +2*(n-1)+1*n=(1)/(6)n(n+1)(n+2)

Let I_n=int_0^1x^ntan^(-1)xdx." Then prove that "(n+1)I_(n)+(n-1)I_(n-2)=pi/2-1/n"

For n in N , Prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Prove that (n !)! is divisible by (n !)^((n-1)!)

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n