Home
Class 12
MATHS
Evaluate: inta^(m x)b^(n x)dx...

Evaluate: `inta^(m x)b^(n x)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(a^(m)b^(n))^(x)/(log(a^(m)b^(n)))+C`

`I=inta^(mx)b^(nx)dx`
`=int(a^(m)b^(n))^(x)dx`
`=(a^(m)b^(n))^(x)/(log(a^(m)b^(n)))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXAMPLE|18 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_a^b x^3dx

Evaluate: intx^x1n(e x)dx

Evaluate: int_a^b cos x dx

Evaluate: int(x^2)/((a+b x)^2)dx

Evaluate: int (dx)/(x(x^n+1))

Evaluate: int_a^b e^x dx using limit of sum

Evaluate int_a^b(dx)/(sqrt(x)),w h e r ea , b > 0.

Evaluate: int[(x-l)(x-m)]/[(x-a)(x-b)]dx

Evaluate : int ((x-l)(x-m))/((x-a)(x-b))dx

Evaluate: int_a^bsinx dx using limit of sum