Home
Class 12
MATHS
I=int(loge( logex))/(x(logex))dx is equa...

`I=int(log_e( log_ex))/(x(log_ex))dx` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`((log_(e)(log_(e)x))^(2))/(2)+C`

`intlog_(e)(log_(e)x)*(1)/(x log_(e)x)dx`
`=int log_(e)(log_(e)x)*(log_(e)(log_(e)x))'dx`
`=((log_(e)(log_(e)x))^(2))/(2)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

I=int(log_ex)^2dx is equal to

int(log sqrt(x))/(3x)dx is equal to

int (cos (log x))/(x)dx

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int (dx)/(x log (x))

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The value of int e^(log(tan x))dx is equal to -

int (dx)/(x log x[log (log x)])

Evaluate: int{(1)/(log_(e)x)-(1)/((log_(e)x)^(2))}dx