Home
Class 12
MATHS
IfI=int(dx)/((2a x+x^2)^(3/2)),then I is...

`IfI=int(dx)/((2a x+x^2)^(3/2))`,then `I` is equal to`` (a)`-(x+a)/(sqrt(2a x+x^2))+c` (b) `-1/a(x+a)/(sqrt(2a x+x^2))+c` (c)`-1/(a^2)(x+a)/(sqrt(2a x+x^2))+c` (d) `-1/(a^3)(x+a)/(sqrt(2a x+x^3))+c`

Text Solution

Verified by Experts

The correct Answer is:
`-(x+a)/(a^(2)sqrt(2ax+x^(2)))+C`

`2ax+x^(2)=(x+a)^(2)-a^(2).`
Now, put `x+a=a sec theta`
` :. dx= a sec theta tan theta d theta`
` :. int (dx)/((2ax+x^(2))^(3//2))=int(a sec theta tan theta)/(a^(3) tan^(3) theta)d theta`
`=(1)/(a^(2))int(cos theta)/(sin^(2) theta) d theta`
`= -(1)/(a^(2)sin theta)+C`
`= -(1)/(a^(2)sqrt(1-(a^(2))/((x+a)^(2))))+C`
`=-(x+a)/(a^(2)sqrt(2ax+x^(2)))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

IfI=int(dx)/((a^2-b^2x^2)^(3/2)),t h e nIe q u a l (a) x/(sqrt(a^2-b^2x^2))+C (b) x/(2sqrt(a^2-b^2x^2))+C (c) (a x)/(sqrt(a^2-b^2x^2))+C (d) none of these

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

IfI=int(dx)/(x^3sqrt(x^2-1)) , the equals

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

int (x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx, x gt 0 is equal to-

int((x+1)dx)/(sqrt(1-2x-x^(2)))

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

int (dx)/((1+x)sqrt(1+2x-x^(2)))

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C