Home
Class 12
MATHS
Evaluate: int1/(e^x-e^(-x))\ dx...

Evaluate: `int1/(e^x-e^(-x))\ dx`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1)(e^(x))+C`

`I=int(dx)/(e^(x)+e^(-x))=int(e^(x)dx)/(e^(2x)+1)`
Let `e^(x)=t.`
` :. e^(x)dx=dt`
` :. I=int(dt)/(t^(2)+1)=tan^(-1)t+C=tan^(-1)(e^(x))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

Evaluate int dx/(e^x + e^-x) dx

Evaluate: int1/(1+e^(-x))dxdot

Evaluate : int (e^(2x-1)-e^(1-2x))/(e^(x+2)) dx

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

Evaluate: int(e^(2x)+e^(4x))/(e^x+e^(-x))dx

Evaluate : int_1^2 (e^(x^2))dx=a , then find the value of int_e^(e^4)root2(log_ex)dx

Evaluate int(e^(2x)-2e^(x))/(e^(2x)+1)dx

Evaluate : int (e^(6x)+e^(4x))/(e^(x)+e^(-x)) dx

Evaluate : int (e^(5x)+e^(3x))/(e^(x)+e^(-x)) dx