Home
Class 12
MATHS
Evaluate intsin^(5)x cos^(2)x dx...

Evaluate `intsin^(5)x cos^(2)x dx`

Text Solution

Verified by Experts

The correct Answer is:
` -(cos^(3))/(3)+(cos^(5)x)/(5) +C`

[Here, power of `sinx` is odd positive integer. Therefore, put `z= cos x.`]
Let ` z=cos x.` Then `dz= -sinx dx`. Now,
`=intsin^(3)x cos^(2)x dx=int sin^(2)x cos^(2)x sinx dx`
`= int (1-cos^(2)x)cos^(2)x sinx dx`
`int(1-z^(2))z^(2)(-dz)`
`=-int(z^(2)-z^(4))dz`
`=-((z^(3))/(3)-(z^(5))/(5))+C= - (cos^(3))/(3)+(cos^(5)x)/(5) +C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int sin^(2) 3x cos 3x dx

Find intsin^(5)x cos^(3)x dx .

Evaluate: intsin^4x\ dx

Evaluate: intsin^2x dx

Evaluate: intsin^2xcos^2x dx

Evaluate: intsin^3xcos^2x dx

Evaluate: int sin^3 x cos^5 x dx

Evaluate: intsin^2(logx)dx

evaluate: int dx/(sin^2 x cos^2 x)

Evaluate: int(sinx)/(cos2x)\ dx