Home
Class 12
MATHS
Evaluate: int[f(x)g''(x)-f ''(x)g(x)]dx...

Evaluate: `int[f(x)g''(x)-f ''(x)g(x)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)g'(x)-f'(x)g(x)+C`

`int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx`
`=intf(x)g^(n)(x)dx-int f^(n)(x)g(x)dx`
` =(f(x)g'(x)-int f'(x)g'(x)dx)-(g(x)f'(x)-int g'(x)f'(x)dx)`
`=f(x)g'(x)-f'(x)g(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int [f(x)g"(x) - f"(x)g(x)]dx is

If intg(x)dx=g(x) , then evaluate intg(x){f(x)+f^(prime)(x)}dx

Evaluate: int_(-5)^(0)f(x)dx" where "f(x)=|x|+|x+2|+|x+5|

If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -

Evaluate : overset (pi//2) underseT (-pi//2) int [f(x)+f(-x)][g(x)-g(-x)]dx

Evaluate : int_(-(pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx

If f: RrarrR and g:RrarrR are two given functions, then prove that 2min.{f(x)-g(x),0}=f(x)-g(x)-|g(x)-f(x)|

Let f(x) and g(x) be real valued functions such that f(x)g(x)=1, AA x in R."If "f''(x) and g''(x)" exists"AA x in R and f'(x) and g'(x) are never zero, then prove that (f''(x))/(f'(x))-(g''(x))/(g'(x))=(2f'(x))/(f(x))

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^(2) .Prove that, int_(0)^(1)f(x)g(x)dx=(1)/(2)(2e-e^(2)-3)