Home
Class 12
MATHS
IfI(m , n)=intcos^m xsinn xdx ,t h e n7I...

`IfI_(m , n)=intcos^m xsinn xdx ,t h e n7I_(4,3)-4I_(3,2)i se q u a lto` constant (b) `-cos^2x+C` `-cos^4xcos3x+C` (d) `cos7x-cos4x+C`

A

constant

B

`-cos^(2)x+C`

C

`-cos^(4)x cos 3x+C`

D

`cos 7x-cos 4x+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(4,3)=int cos^(4)x sin3x dx`
Integrating by parts, we have
`I_(4,3)= -(cos3xcos^(4)x)/(3)-(4)/(3)intcos^(3)xsinx cos3x dx`
But `sinx cos3x= -sin2x+sin3x cosx.` So,
`I_(4,3)= -(cosx cos^(4)x)/(3)+(4)/(3)intcos^(3)x sin 2x dx-(4)/(3)intcos^(4)x sin3xdx+C`
`= -(cos3xcos^(4)x)/(3)+(4)/(3)I_(3,2)-(4)/(3)I_(4,3)+C`
Therefore, `(7)/(3)I_(4,3)-(4)/(3)I_(3,2)= -(cos3x cos^(3)x)/(3)+C`
or `7I_(4,3)-4I_(3,2)= -cos 3x cos^(4)x+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

IfI_(m , n)=intcos^m xsinn xdx , then 7I_(4,3)-4I_(3,2)" is equal to" (a) constant (b) -cos^2x+C (c) -cos^4xcos3x+C (d) cos7x-cos4x+C

int e^(3x)cos4x dx

sin3x + sinx = cos6x + cos4x

IfI_n=int_0^pie^x(sin"x")^("n")dx ,t h e n(I_3)/(I_1)"is equal to" (a) 3/5 (b) 1/5 (c) 1 (d) 2/5

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

cos9x cos7x = cos5x cos3x [-pi/4 le x le pi/4]

IfI=int(sin2x)/((3+4cosx)^3)dx ,t h e nIe q u a l s (a) (3cosx+8)/((3+4cosx)^2)+C (b) (3+8cosx)/(16(3+4cosx)^2)+C (c) (3cosx)/((3+4cosx)^2)+C (d) (3-8cosx)/(16(3+4cosx)^2)+C

If I_(m,n) = int cos^m x cdot cos nx cdot dx show that (m + n) I_(m,n) = cos^m x cdot sin nx + m I_(m - 1, n-1)

Show that : int cos 7 x sin 4x dx = 1/6 cos 3x - 1/22 cos 11x + c

Prove : int 2 cos^(2) 2x sin 4x dx = -1/16(4 cos 4x + cos 8x) + c

CENGAGE PUBLICATION-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. Find the value of " int x sec^(2)x dx

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. inte^x((2tanx)/(1+tanx)+cot^2(x+pi/4))dx is equal to (a)e^xtan(pi/4-x...

    Text Solution

    |

  7. int e^(x^4) (x^3) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)...

    Text Solution

    |

  9. int e^x((x^2+1))/((x+1)^2)dx is equal to (a) ((x-1)/(x+1))e^x+c (b)...

    Text Solution

    |

  10. int((x+2)/(x+4))^2 e^xdx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dxi se q u a lto e^(tanx)cosx+C e^(tanx)sinx...

    Text Solution

    |

  12. int(cos e c^2x-2005)/(cos^(2005)x)dx is equal to (a) -(cotx)/((cosx)^...

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. If xf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x)...

    Text Solution

    |

  16. The value of int(a x^2-b)/(xsqrt(c^2x^2-(a x^2+b)^2)) (a) 1/csin^(-...

    Text Solution

    |

  17. int dx/((1+sqrtx)sqrt(x-x^2) is equal to ?

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)dx is equal to

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |