Home
Class 12
MATHS
If e^(A) is defined as e^(A)=I+A+A^(2)/(...

If `e^(A)` is defined as `e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))]`, where `A=[(x,x),(x,x)], 0 lt x lt 1` and 1 is identity matrix, then find the functions f(x) and g(x).

A

`(e^(x))/(2)(sinx-cosx)`

B

`(e^(2x))/(5)(2sinx-cosx)`

C

`(e^(x))/(5)(sin2x-cos2x)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`A=[(x,x),(x,x)]`
`impliesA^(2)=[(2x^(2),2x^(2)),(2x^(2),2x^(2))],A^(3)=[(2^(2)x^(3),2^(2)x^(3)),(2^(2)x^(3),2^(2)x^(3))]` and so on
Then `e^(A)=I+A+(A^(2))/(2!)+(A^(3))/(3!)+ … +`
`=[(1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ... ,x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ...),(x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ..., 1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ...)]`
`=[((1)/(2)(1+2x+(2^(2)x^(2))/(2!)+(2^(3)x^(3))/(3!)+ ...)+(1)/(2) ,(1)/(2)(1+2x+(2^(2)x^(2))/(2!)+ ...)-(1)/(2)),((1)/(2)(1+2x+(2^(2)x^(2))/(2!)+(2^(3)x^(3))/(3!)+ ...)-(1)/(2) ,(1)/(2)(1+2x+(2^(2)x^(2))/(2!)+ ...)+(1)/(2))]`
`=(1)/(2)[(e^(2x)+1,e^(2x)-1),(e^(2x)-1,e^(2x)+1)]`
` :. f(x)=e^(2x)+1 and g(x)=e^(2x)-1`
`int(g(x)+1)sinx dx=inte^(2x) sinx dx=(e^(2x))/(5)(2sinx-cosx)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))] , where A=[(x,x),(x,x)], 0 lt x lt 1 and I is identity matrix, then find the functions f(x) and g(x).

If A is a square matrix and e^(A) =I +A +(A^(2))/(2!)+(A^(3))/(3!)+....oo=(1)/(2){:[(f(x),g(x)),(g(x),f(x)):}]" where "A={:[(x,x),(x,x):}] and 0lt xlt 1, I is an Identity matrix. int (g(x)+1) sin xdx=

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). Then find the function f(x) and g(x) .

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

Suppose that g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

f(x)={(x-1, -1lexlt0),(x^2, 0ltxle1):} and g(x)=sin x. Then find h(x)=f(|g(x)|)+|f(g(x))|

Let f(x)=(1)/(1+x^(2)) and g(x) is the inverse of f(x) ,then find g(x)

Let f be a function defined on [0,2]. Then find the domain of function g(x)=f(9x^2-1)

CENGAGE PUBLICATION-INDEFINITE INTEGRATION-Exercises (Linked Comprehension Type)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),...

    Text Solution

    |

  5. If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),...

    Text Solution

    |

  6. If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),...

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value o...

    Text Solution

    |

  11. Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value o...

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  15. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |