Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `(a) -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `(b) 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `(c) -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `(d) 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

`-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

B

`(1)/((secx+tanx)^(1//11)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

C

`-(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

D

`(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(sec^(2)x)/((secx+tanx)^(9//2))dx`
Let ` sec x +tanx=t`
` or sec x -tan x=1//t`
Now, `(secx tanx+sec^(2)x)dx =dt`
`or secx(secx+tanx)dx=dt`
` or secx dx=(dt)/(t),(1)/(2)(t+(1)/(t))=sec x`
` :. I=(1)/(2)int ((t+(1)/(t)))/(t^(9//2))(dt)/(t)`
`=(1)/(2)int(t^(-9//2)+t^(-13//2))dt`
`=(1)/(2)[(t^(-9//2+1))/(-(9)/(2)+1)+(t^(-13//2+1))/(-(13)/(2)+1)]+K`
`=(1)/(2)[(t^(-7//2))/(-(7)/(2))+(t^(-11//2))/(-(11)/(2))]+K`
`= -(1)/(7) t^(-7//2)-(1)/(11)t^(-11//2)+K`
`= -(1)/(7) (1)/(t^(7//2))-(1)/(11)(1)/(t^(11//2))+K`
`= -(1)/(t^(11//2))((1)/(11)+(t^(2))/(7))+K`
`= -(1)/((secx+tan x)^(11//2)){(1)/(11)+(1)/(7)(sec x+tanx)^(2)}+K`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • HYPERBOLA

    CENGAGE PUBLICATION|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral intsec^2x/(secx+tanx)^(9//2) dx equals (for some arbitrary constant K)

I=intsqrt(1+2tanx(secx+tanx))dx is equal to

Knowledge Check

  • Choose the correct answer inte^(x)secx(1+tanx)dx equals

    A
    `e^(x) cos x + C`
    B
    `e^(x) sec x + C`
    C
    `e^(x) sin x + C`
    D
    `e^(x) tan x + C`
  • Similar Questions

    Explore conceptually related problems

    int(secx)/(sqrt(cos2x)) dx is equal to

    I=int(cos4x+1)/(cotx-tanx)dx is equal to ?

    Integrate : int x tanx sec^(2)x dx

    Integrate : int cos2x log(1+tanx)dx

    The valueof the integral int_(0)^((pi)/(2)) (1)/(1+(tanx)^(101))dx is equal to

    int cosec^(2)x log(secx)dx

    The vaue of the integral int_(0)^((pi)/(2))(1)/(1+(tanx)^(101))dx is equal to -