Home
Class 12
MATHS
In triangle ABC, if cos^(2)A + cos^(2)B ...

In triangle ABC, if `cos^(2)A + cos^(2)B - cos^(2) C = 1`, then identify the type of the triangle

Text Solution

Verified by Experts

The correct Answer is:
Right angled triangle

`cos^(2) A + cos^(2) B - cos^(2) C = 1`
or `1 - sin^(2) A + 1 - sin^(2) B - 1 + sin^(2) C = 1`
or `sin^(2) A + sin^(2) B = sin^(2) C rArr a^(2) + b^(2) = c^(2)`
Thus, the triangle is right angled at C
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, cos^(2)A + cos^(2)B + cos^(2)C =1 , then show that the triangle is right angled.

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

If in a triangle DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then

In any triangle ABC if cosA + 2cos B + cosC=2 , show that the sides of the triangle are in A.P.

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if cosA + cos B + cosC =3/2 , then show that the triangle is equilateral.

In a triangle ABC if a cos^2(C/2)+c cos^2(A/2)=((3b)/2) show that sides of the trianglea are in A.P.

In any triangle ABC, prove that cosA + cos B + cos C le 3/2

In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that the triangle in an isosceles right angled.

In a triangle ABC, if (cos A)/(a) =(cos B)/(b ) =(cos C)/(c) and the side a=2, then the area of the triangle is-