Home
Class 12
MATHS
Prove that b^(2) cos 2 A - a^(2) cos 2B ...

Prove that `b^(2) cos 2 A - a^(2) cos 2B = b^(2) -a^(2)`

Text Solution

Verified by Experts

`b^(2) cos 2A - a^(2) cos 2B`
`=b^(2) (1-2 sin^(2)A) - a^(2) (1 - 2 sin^(2) B)`
`= b^(2) - a^(2) - 2 (b^(2) sin^(2) B)`
`= b^(2) -a^(2) -2 (b^(2) sin^(2) A - a^(2) sin^(2) B) = b^(2) - a^(2) " " ( :' a sin B = b sin A)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

(vii) (b^(2) -c^(2)) cos 2A + (c^(2) -a^(2)) cos 2B + (a^(2) -b^(2)) cos 2C=0

Prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = 2s

If " "a cos theta + b sin theta =c " and " b cosec theta - a sec theta = c, " prove that" cot 2 theta = (c^(2) + a^(2) - b^(2))/(2ab)

(iv) a^(2)(cos^(2) B - cos^(2)C) + b^(2) (cos^(2) C- cos^(2)A) + c^(2) (cos^(2)A- cos^(2)B)=0

If A+C+B=180, then the value of (cos ^(2) A+ cos ^(2) B +cos ^(2) C-2 cos A cos B cos C) is-

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

Prove that (sin A-sin B)/(cos A+ cos B) = "tan" (A-B)/2

"Prove that" tan (A+B) - tan (A - B) = (sin2 B)/(cos^(2)B - sin^(2) A).

Prove that : cos^(-1)b-sin^(-1)a=cos^(-1)(bsqrt(1-a^(2))+asqrt(1-b^(2)))