Home
Class 12
MATHS
In any /\ A B C , prove that (b^2-c^2)co...

In any `/_\ A B C ,` prove that `(b^2-c^2)cotA+(c^2-a^2)cotB+(c^2-b^2)cotC=0`

Text Solution

Verified by Experts

Since `a = 2R sin A, b = 2R sin B, and c = 2R sin C`, we have
`(b^(2) -c^(2)) cot A = 4R^(2) (sin^(2) B - sin^(2) C) cot A`
`=4R^(2) sin(B + C) sin (B - C) cot A`
`= 4R^(2) sin A sin (B - C) (cos A)/(sin A)`
`= -4R^(2) sin (B - C) cos (B + C) " " ( :' cos A = - cos (B + C))`
`= -2R^(2) [2 sin (B - C) cos (B + C)]`
`= -2R^(2) [sin 2B - sin 2C]`(i)
Similarly, `(c^(2) -a^(2)) cot B = - 2R^(2) [sin 2 C - sin 2A]` (ii)
and `(a^(2) -b^(2)) cot C = -2R^(2) [sin 2A - sin 2B]` (iii)
Adding Eqs. (i), (ii), and (iii), we get
`(b^(2) - c^(2)) cot A + (c^(2) - a^(2)) cot B + (a^(2) - b^(2)) cot C = 0`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that, (b^(2)-c^(2))cot A + (c^(2)-a^(2)) cot B + (a^(2)-b^(2)) cot C=0

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

In any triangle ABC, prove that, (b-c)cot 'A/2' + (c-a) cot 'B/2' + (a-b) cot 'C/2'=0

For any triangle ABC prove that (b-c)cot(A/2)+(c-a)cot(B/2)+(a-b)cot(C/2) =0

In any triangle ABC prove that a^2cotA+b^2cotB+c^2cotC=(abc)/R

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

In A B C , prove that (a-b)^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

Prove that in any /_\ABC . (b-c)cot(A/2)+(c-a)cot (B/2)+(a-b)cot (C/2)=0

If a,b,c are in GP, Prove that, a(b^2+c^2) =c(a^2+b^2)

in any triangle ABC prove that (b-c)/acos^2(A/2)+(c-a)/(b)cos^2(B/2)+(a-b)(/c)cos^2(C/2)=0