Home
Class 12
MATHS
In any triangle A B C , prove that: (1+c...

In any triangle `A B C` , prove that: `(1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^2+b^2)/(a^2+c^2)`

Text Solution

Verified by Experts

`(1 + cos (A - B) cos C)/(1 + cos (A - C) cos B) = (1 - cos (A - B) cos (A + B))/(1 - cos (A - C) cos (A + C))`
`= (1- (cos^(2) A - sin^(2) B))/(1 - (cos^(2) A - sin^(2) C))`
`= (sin^(2) A + sin^(2)B)/(sin^(2) A + sin^(2) C)`
`= (a^(2) + b^(2))/(a^(2) + c^(2))` [using a = 2 R sin A, etc]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that cosA + cos B + cos C le 3/2

In any triangle ABC, prove that, c sin((A-B)/2)= (a-b) cos( C/2)

In any triangle ABC, prove that, a^(3) cos(B-C) + b^(3) cos(C-A) + c^(3) cos(A-B) = 3abc.

In triangle A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

In a DeltaABC prove that: a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc

in any triangle ABC prove that (b-c)/acos^2(A/2)+(c-a)/(b)cos^2(B/2)+(a-b)(/c)cos^2(C/2)=0

If any quadrilateral ABCD, prove that "sin"(A+B)+sin(C+D)=0 "cos"(A+B)=cos(C+D)

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle A B C , prove that following : c/(a+b)=(1-tan(A/2)tan(B/2))/(1+tan(A/2)tan(B/2))

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)