Home
Class 12
MATHS
In a triangle ABC, if a, b, c are in A.P...

In a triangle ABC, if a, b, c are in A.P. and `(b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2`, then find the value of sin B

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`

`(b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2`
`rArr 2 sin B cos C + 2 sin C cos B + 2 sin B cos A + 2 sin B cos B = 2`
`rArr sin (B + C) + sin (A + B) = 1`
`rArr sin A + sin C = 1`
`rArr sin B = (1)/(2) " " ("As " 2 sin B = sin A + sin C)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, sin A, sin B, sin C are in A.P, then

In triangleABC,sin((B+C)/2) =

In any triangle ABC, prove that (sin A)/(sin B + sin C) + (sin B)/(sin C + sin A) + (sin C)/(sin A + sinB) ge 3/2 .

In any triangle ABC, the value of (b^(2)sin 2C + c^(2) sin 2B) is-

If in a triangle ABC, b sin B = c sin C, then the triangle is-

In triangle ABC, (i) asin(A/2 + B) = (b+c) sin A/2

In any triangle ABC, prove that, c sin((A-B)/2)= (a-b) cos( C/2)

In triangle ABC if sin^2B+sin^2C=sin^2A then

A triangle ABC is such that sin (2A + B) = 1/2 . If A,B,C are in A.P., then find the value of A,B and C.

In any triangle ABC show that b^2sin2C+c^2sin 2B=abc/R