Home
Class 12
MATHS
If in a triangle ABC, (bc)/(2 cos A) = b...

If in a triangle `ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A` then prove that the triangle must be isosceles.

Text Solution

Verified by Experts

We have `(bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A = a^(2)`
`rArr cos A = (bc)/(2a^(2))`
`rArr (b^(2) + c^(2) -a^(2))/(2bc) = (bc)/(2a^(2))`
`rArr b^(2) c^(2) = a^(2) (b^(2) + c^(2) - a^(2))`
`rArr (a^(2) - b^(2)) (a^(2) - c^(2)) = 0`
`rArr a = b " or " a = c`
Hence, triangle is isosceles
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, cos^(2)A + cos^(2)B + cos^(2)C =1 , then show that the triangle is right angled.

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If 2 cos A = (sin B)/(sin C) then show that the triangle is isosceles.

In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that the triangle in an isosceles right angled.

In any triangle ABC, if 8R^(2) =a^(2) + b^(2) +c^(2) , prove that, the triangle is right angled.

Using vectors , prove that in a triangle ABC a^(2)= b^(2) + c^(2) - 2bc cos A where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If in a triangle DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then