Home
Class 12
MATHS
In triangleABC (b+c)/11=(c+a)/12=(a+b)/1...

In `triangleABC` (b+c)/11=(c+a)/12=(a+b)/13 then prove that (cosA)/7=(cosB)/19=(cosC)/25

Text Solution

Verified by Experts

Let `(b + c)/(11) = (c + a)/(12) = (a +b)/(13) = k`
`:. B + c = 11 k`
`c + a = 12 k`
`a + b = 13 k`
Adding the above three equations, we get
`2(a + b + c) = 36k`
or `a + b + c = 18 k`
From Eqs. (i) and (iv), `a = 7 k`
From Eqs. (ii) and (iv), `b = 6k`
From Eqs. (iii) and (iv), `c = 5k`
`cos A = (b^(2) + c^(2) - a^(2))/(2bc) = (36k^(2) + 25k^(2) - 49k^(2))/(2 xx 6k xx 5k)`
`= (12k^(2))/(60k^(2)) = (1)/(5)`
`cos B = (c^(2) + a^(2) -b^(2))/(2ca) = (25 k^(2) + 49k^(2) - 36k^(2))/(2 xx 5k xx 7k)`
`= (38k^(2))/(70k^(2)) = (19)/(35)`
`cos C = (a^(2) + b^(2) -c^(2))/(2ab) = (49k^(2) + 36 k^(2) - 25 k^(2))/(2 xx 7k xx 6k)`
`= (60k^(2))/(84 k^(2)) = (5)/(7)`
`:. (cos A)/((1//5)) = (cos B)/((19 //35)) = (cos C)/((5//7))`
or `(cos A)/((7//35)) = (cos B)/((19//35)) = (cos C)/((25//35))`
or `(cos A)/(7) = (cos B)/(19) = (cos C)/(25)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

In the triangle ABC, if (b+c)/11 = (c+a)/12 = (a+b)/13 , prove that (cos A)/7 = (cos B)/19 = (cos C)/25 .

In any triangle ABC, If b^(2) = a(c+a), c^(2) = b(a+b) , then prove that, cosAcosB cosC =-1/8 .

prove that cosA +cosB+cosC=1+r/R.

Prove that a(bcosC-c cosB)=b^2-c^2

In a triangle ABC, if (b+c)/(11) =(c+a)/(12) =(a+b)/(13), then the value of cos C is-

In triangleABC,sin((B+C)/2) =

If in a triangle (s-a)/11=(s-b)/12=(s-c)/13, then tan^2(A/2)

If (sinA)/3=(sin B)/3=(sin C)/4 then prove that cosC=1/9

In A B C , prove that cosA+cosB+cosClt=3/2dot

In triangle ABC tan(A/2), tan(B/2) and tan (C/2) are in A.P. then prove that cosA,cosB,cosC are in A.P.