Home
Class 12
MATHS
In A B C , if b^2+c^2=2a^2, then value ...

In ` A B C ,` if `b^2+c^2=2a^2,` then value of `(cotA)/(cotB+cotC)` is

A

`(1)/(2)`

B

`(3)/(2)`

C

`(5)/(2)`

D

`(5)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(cotA)/(cotB cotC) = ((R(b^(2) + c^(2) -a^(2)))/(abc))/((R(a^(2) + c^(2) -b^(2)))/(abc) + (R(a^(2) + b^(2) -c^(2)))/(abc))`
`= (b^(2) + c^(2) -a^(2))/(2a^(2))`
`= (2a^(2) -a^(2))/(2a^(2))`
`= (1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

In A B C , if cotA+cotB+cotC=0 then find the value of cosAcos BcosC

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to

In a DeltaABC, b^2+c^2 = 1999a^2, then (cotB+cotC)/cotA is equal to

If in a DeltaABC, the value of cotA, cotB, cotC are in A.P. show a^2,b^2,c^2 are in A.P.

if in a triangle ABC ,a^2,b^2,c^2 are in A.P. then show that cotA,cotB and cotC are also in A.P

If A+B+C=270^(@), then the value of cos 2A +cos 2B + cos 2C + 4 sin A sin B sin C is-

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

In triangle A B C , if cotA *cotC=1/2a n dcot B* cotC=1/(18), then the value of tanC is

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

CENGAGE PUBLICATION-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. In any triangle A B C ,(a^2+b^2+c^2)/(R^2) has the maximum value of 3 ...

    Text Solution

    |

  2. In triangle A B C ,R(b+c)=asqrt(b c),w h e r eR is the circumradius of...

    Text Solution

    |

  3. In A B C , if b^2+c^2=2a^2, then value of (cotA)/(cotB+cotC) is

    Text Solution

    |

  4. If sinthetaa n d-costheta are the roots of the equation a x^2-b x-c=0 ...

    Text Solution

    |

  5. If D is the mid-point of the side B C of triangle A B C and A D is per...

    Text Solution

    |

  6. In a triangle ABC, if cotA :cotB :cotC = 30: 19 : 6 then the sides a, ...

    Text Solution

    |

  7. In A B C ,P is an interior point such that /P A B=10^0/P B A=20^0,/P ...

    Text Solution

    |

  8. In A B C , if A B=c is fixed, and cosA+cosB+2cos C=2 then the locus o...

    Text Solution

    |

  9. If in A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7 then a^2+b^2+c^2 must be (a)R...

    Text Solution

    |

  10. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  11. In A B C ,(cot (A/2)+cot(B/2))(asin^2(B/2)+bsin^2(A/2))= (a) cotC (...

    Text Solution

    |

  12. In a right-angled isosceles triangle, the ratio of the circumradius an...

    Text Solution

    |

  13. In a ΔABC, a semicircle is inscribed, whose diameter lies on the side ...

    Text Solution

    |

  14. In A B C ,A(2pi)/3,b-c=3sqrt(3)c m and area of A B C=(9sqrt(3))/2c m...

    Text Solution

    |

  15. In triangle A B C , let /c=pi/2dot If r is the inradius and R is circu...

    Text Solution

    |

  16. In the given figure A B is the diameter of the circle, centred at Odot...

    Text Solution

    |

  17. In triangle A B C ,ifPdotQ ,R divides sidesB C ,A C , and A B , respec...

    Text Solution

    |

  18. If the angles of a triangle are 30^0a n d45^0 and the included side is...

    Text Solution

    |

  19. In triangle A B C , base B C and area of triangle are fixed. The locus...

    Text Solution

    |

  20. Let the area of triangle ABC be (sqrt3 -1)//2, b = 2 and c = (sqrt3 -1...

    Text Solution

    |