Home
Class 12
MATHS
Let O be a point inside a triangle A B C...

Let `O` be a point inside a triangle `A B C` such that `/_O A B=/_O B C=/_O C A=omega` , then show that: `Cos e c^2omega=cos e c^2A+cos e c^2B+cos e c^2C`

Text Solution

Verified by Experts

The correct Answer is:
D


Applying sine rule in `DeltaAOB`, we have
`(OA)/(sin angleABO) = (AB)/(sin angle AOB)`
or `OA = (c sin angleABO)/(sin angleAOB) = (c sin (B - theta))/(sin B)`...(i)
`[ :' angle ABO = B - theta, angle AOB = 180^(@) - theta - angleABO = 180^(@) -B]`
Again in `DeltaAOC`, we have
`(OA)/(sin angleACO) = (AC)/(sin angleAOC)`
`rArr OA = (b sin angleACO)/(sin angleAOC) = (b sin theta)/(sin A)`
`[ :' angleOAC = A - theta, angleAOC = 180^(@) - theta - angleOAC = 180^(@)]`
From Eqs. (i) and (ii), we have
`(c sin (B - theta))/(sin B) = (b sin theta)/(sin A)`
or `c sin A (B - theta) = b sin theta sin B`
`= b sin theta sin (A +C)`
or `2R sin C sin A (sin B cos theta - cos B sin theta)`
`= 2R sin B sin theta (sin A cos C + cos A sin C)`
Dividing both sides by `2R sin theta sin A sin B sin C`, we get
`cot theta - cot B = cot C + cot A`
or `cot theta = cot A + cot B + cot C`
Squaring both sides, we have
`cot^(2) theta = cot^(2) A + cot^(2) B + cot^(2)C + 2(cotA cot B + cot B cot C + cot C cot A)`
or `cosec^(2) theta - 1 = (cosec^(2) A -1) + (cosec^(2) B -1) + (cosec^(2) C -1) + 2`
[since in `DeltaABC, cot A cot B + cot B cot C + cot C cot A = 1`]
or `cosec^(2) theta = cosec^(2) A + cosec^(2) B + cosec^(2)C`
Area of triangle ABC,
`Delta = Delta_(1) + Delta_(2) + Delta_(3)`
`=(1)/(2) [a OB + b OC + c OA] sin theta`
`=(1)/(4) tan theta [2 a OB cos theta + 2b OC cos theta+ 2c OA cos theta]`
`=(1)/(4) tan theta [(a^(2) + x^(2) -y^(2)) + (b^(2) + y^(2) - z^(2)) + (c^(2) + z^(2) - x^(2)]`
`= (1)/(4) tan theta [a^(2) + b^(2) + c^(2)]`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Matrix match type|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple correct answer type|24 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Let O be a point inside a triangle A B C such that /_O A B=/_O B C=/_O C A=omega , then show that: cotomega=cotA+cotB+cot C

Which of the following is the greates? cos e c1 (b) cos e c2 cos e c4 (d) cos e c(-6)

The value of cos e c10^0+cos e c50^0-cos e c70^0 is ____

In any triangle ABC if sin A sin B sin C+ cos A cos B=1 , then show that a:b:c=1:1: sqrt(2) .

In triangle A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

If A+B+C=pi then the value of cos ^(2)A + cos ^(2) B+ cos ^(2)C is-

In triangle ABC if the angles A,B and C be in A.P. then show that 2cos ((A-C)/2)=(a+c)/sqrt(a^2-ac+c^2)

If I is the incenter of a triangle ABC, then the ratio I A : I B : I C is equal to (a) cos e c A/2: cos e c B/2: cos e c C/2 (b) sinA/2:sinB/2:sinC/2 (c) secA/2:secB/2:secC/2 (d) none of these

Prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = 2s

D , E , F are three points on the sides B C ,C A ,A B , respectively, such that /_A D B=/_B E C=/_C F A=thetadot A^(prime), B ' C ' are the points of intersections of the lines A D ,B E ,C F inside the triangle. Show that are of A^(prime)B^(prime)C^(prime)=4cos^2theta, where is the area of A B Cdot

CENGAGE PUBLICATION-PROPERTIES AND SOLUTIONS OF TRIANGLE-Linked comprehension type
  1. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are...

    Text Solution

    |

  2. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are...

    Text Solution

    |

  3. Let O be a point inside a triangle A B C such that /O A B=/O B C=/O C ...

    Text Solution

    |

  4. find the principle value of cos^(-1)((sqrt3)/2)

    Text Solution

    |

  5. Let O be a point inside a triangle A B C such that /O A B=/O B C=/O C ...

    Text Solution

    |

  6. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  7. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  8. An isosceles triangle has two equal sides of length 'a' and angle betw...

    Text Solution

    |

  9. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  10. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  11. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  12. Bisectors of angles A, B and C of a triangle ABC intersect its circum...

    Text Solution

    |

  13. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  14. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  15. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  16. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  17. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  18. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  19. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  20. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |