Home
Class 12
MATHS
Let O be a point inside a triangle A B C...

Let `O` be a point inside a triangle `A B C` such that `/_O A B=/_O B C=/_O C A=omega` , then show that: `cotomega=cotA+cotB+cot C`

Text Solution

Verified by Experts

The correct Answer is:
A


Applying sine rule in `DeltaAOB`, we have
`(OA)/(sin angleABO) = (AB)/(sin angle AOB)`
or `OA = (c sin angleABO)/(sin angleAOB) = (c sin (B - theta))/(sin B)`...(i)
`[ :' angle ABO = B - theta, angle AOB = 180^(@) - theta - angleABO = 180^(@) -B]`
Again in `DeltaAOC`, we have
`(OA)/(sin angleACO) = (AC)/(sin angleAOC)`
`rArr OA = (b sin angleACO)/(sin angleAOC) = (b sin theta)/(sin A)`
`[ :' angleOAC = A - theta, angleAOC = 180^(@) - theta - angleOAC = 180^(@)]`
From Eqs. (i) and (ii), we have
`(c sin (B - theta))/(sin B) = (b sin theta)/(sin A)`
or `c sin A (B - theta) = b sin theta sin B`
`= b sin theta sin (A +C)`
or `2R sin C sin A (sin B cos theta - cos B sin theta)`
`= 2R sin B sin theta (sin A cos C + cos A sin C)`
Dividing both sides by `2R sin theta sin A sin B sin C`, we get
`cot theta - cot B = cot C + cot A`
or `cot theta = cot A + cot B + cot C`
Squaring both sides, we have
`cot^(2) theta = cot^(2) A + cot^(2) B + cot^(2)C + 2(cotA cot B + cot B cot C + cot C cot A)`
or `cosec^(2) theta - 1 = (cosec^(2) A -1) + (cosec^(2) B -1) + (cosec^(2) C -1) + 2`
[since in `DeltaABC, cot A cot B + cot B cot C + cot C cot A = 1`]
or `cosec^(2) theta = cosec^(2) A + cosec^(2) B + cosec^(2)C`
Area of triangle ABC,
`Delta = Delta_(1) + Delta_(2) + Delta_(3)`
`=(1)/(2) [a OB + b OC + c OA] sin theta`
`=(1)/(4) tan theta [2 a OB cos theta + 2b OC cos theta+ 2c OA cos theta]`
`=(1)/(4) tan theta [(a^(2) + x^(2) -y^(2)) + (b^(2) + y^(2) - z^(2)) + (c^(2) + z^(2) - x^(2)]`
`= (1)/(4) tan theta [a^(2) + b^(2) + c^(2)]`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Matrix match type|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Multiple correct answer type|24 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Let O be a point inside a triangle A B C such that /_O A B=/_O B C=/_O C A=omega , then show that: Cos e c^2omega=cos e c^2A+cos e c^2B+cos e c^2C

In any triangle ABC, if 1/(a+c) + 1/(b+c) = 3/(a+b+c) then show that, C=60^(@) .

In any triangle ABC, show that, (a+b-c) (cot A/2 + cotB/2) = 2c cot C/2

Let P be a point interior to the acute triangle A B Cdot If P A+P B+P C is a null vector, then w.r.t triangle A B C , point P is its a. centroid b. orthocentre c. incentre d. circumcentre

In A B C , if b^2+c^2=2a^2, then value of (cotA)/(cotB+cotC) is

Let O be the circumcentre and H be the orthocentre of an acute angled triangle ABC. If A gt B gt C , then show that Ar (Delta BOH) = Ar (Delta AOH) + Ar (Delta COH)

If A + B + C = pi " and " cos A = cos B cos C, "show that" 2 cot B cot C = 1

Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The point R inside the triangle O P Q is such that the triangles O P R ,P Q R ,O Q R are of equal area. The coordinates of R are

A and B are fixed points such that AB=2a. The vertex C of DeltaABC such that cotA+cotB =constant. Then locus of C is

Let A, B, and C be the sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C . Show that B = C .

CENGAGE PUBLICATION-PROPERTIES AND SOLUTIONS OF TRIANGLE-Linked comprehension type
  1. Let O be a point inside a triangle A B C such that /O A B=/O B C=/O C ...

    Text Solution

    |

  2. find the principle value of cos^(-1)((sqrt3)/2)

    Text Solution

    |

  3. Let O be a point inside a triangle A B C such that /O A B=/O B C=/O C ...

    Text Solution

    |

  4. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  5. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  6. An isosceles triangle has two equal sides of length 'a' and angle betw...

    Text Solution

    |

  7. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  8. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  9. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  10. Bisectors of angles A, B and C of a triangle ABC intersect its circum...

    Text Solution

    |

  11. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  12. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  13. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  14. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  15. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  16. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  17. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  18. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  19. In DeltaABC, P,Q, R are the feet of angle bisectors from the vertices ...

    Text Solution

    |

  20. In triangleABC, P,Q, R are the feet of angle bisectors from the vertic...

    Text Solution

    |