Home
Class 12
MATHS
If un=sin^("n")theta+cos^ntheta, then pr...

If `u_n=sin^("n")theta+cos^ntheta,` then prove that `(u_4-u_6)/(u_2-u_4)=1/2` .

Text Solution

Verified by Experts

`(u_5-u_(7))/(u_3-u_(5))=((sin^5theta +cos^5theta)-(sin^7theta+cos^7theta))/((sin^3theta +cos^3theta)-(sin^5theta+cos^5theta))`
`(sin^5theta(1-sin^2theta)+cos^5theta(1-cos^2theta))/(sin^3theta(1-sin^2theta)+cos^3theta(1-cos^2theta))`
`=(sin^2thetacos^2theta[sin^3theta+cos^3theta])/(sin^2thetacos^2theta[sintheta+costheta])=u_3/u_1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

If u_(n)=sin^(n)alpha+cos^(n)alpha , then prove that 2u_(6)-3u_(4)+1=0 .

If u_(n)=2 cos n theta , then show that u_(n+1)= u_(1)u_(n)-u_(n-1) , hence, show that 2 cos 5 theta= u_(1)^(5)- 5u_(1)^(3)+ 5u_(1)

If u_n=sin ^n alpha+cos^nalpha then show that, the value of 6u_4-4u_6 is independent of alpha .

If p_n =cos^n theta+sin ^ntheta then the value of 2P_6-3P_4+1 will be

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If U_n=2 cosntheta then U_1U_n-U_(n-1) is equal to

If u_n=cos^ntheta+sin^ntheta then 2u_6-ku_4+1=0 then the numerical quantity k must be equal to

A train of mass M is in motion. When its velocity is u_1 and acceleration is a_1 , resistive force against its speed is R_1 . Also when velocity is u_2 and acceleration is a_2 , resistive forced is R_2 . If the engine works at a fixed rate P, show that P(u_2-u_1)=u_1u_2(R_1-R_2)+Mu_1u_2(a_1-a_2) .

If u_(n)=int_(0)^((pi)/(4))tan^(n)xdx , show that, u_(n)+u_(n-2)=(1)/(n-1)(ngt1) , hence find u_(5)