Home
Class 12
MATHS
If a^2+b^2+2a bcostheta=1,c^2+a^2+2c dco...

If `a^2+b^2+2a bcostheta=1,c^2+a^2+2c dcostheta=1` and `a c+b d+(a d+b c)costheta=0,` then prove that `a^2+c^2=cos e c^2theta`

Text Solution

Verified by Experts

`a^2+b^2+2abcostheta=1`
`rArr(b+acos theta)^2=1-a^2sin^2theta`
`c^2+d^2+2cdcostheta=1`
`rArr(d+c costheta)^2=1-c^2sin^2theta`
`ac+bd+(ad+bc)costheta=0`
`rArr (b+acostheta)(d+c costheta)=-ac sin^2theta`
`rArr(b+acostheta)^2(d+c costheta)^2=(-ac sin^2theta)^2`
`rArr (1-a^2sin^2theta)(1-c^2sin^2theta)=a^2c^2sin^4theta`
`rArr (a^2+c^2)sin^2theta=1`
`rArr (a^2+c^2)=cosec^2theta`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

If a^2+b^2+2a bcostheta=1,c^2+d^2+2c dcostheta=1 and a c+b d+(a d+b c)costheta=0, then prove that a^2+c^2=cos e c^2theta

If a+c = 2b and 2/c= 1/b+1/d then prove that a:b = c:d.

If cos(A/2)=sqrt((b+c)/(2c)) , then prove that a^2+b^2=c^2dot

If " "a cos theta + b sin theta =c " and " b cosec theta - a sec theta = c, " prove that" cot 2 theta = (c^(2) + a^(2) - b^(2))/(2ab)

If a, b, c are in GP then prove that, (a+2b+2c)(a-2b+2c)= a^2+ 4c^2

In A B C , prove that (a-b)^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

If a+b+c= 0 prove that 1/(2a^2+bc)+1/(2b^2+ca)+1/(2c^2+ab)=0

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : costheta=(a c+b d)/(sqrt((a^2+b^2)(c^2+d^2)))

If a,b,c,d are in GP then prove that, (a^2-b^2), (b^2-c^2), (c^2-d^2) are in GP.

If asin^2x+bcos^2x=c,bsin^2y+acos^2y=d,and atanx=btany , then prove that a^2/b^2=((d-a)(c-a))/((b-c)(b-d)) .