Home
Class 12
MATHS
Let A=sinx+cosxdot Then find the value o...

Let `A=sinx+cosxdot` Then find the value of `sin^4x+cos^4x` in terms of `Adot`

Text Solution

Verified by Experts

`A=sinx+cosx`
`:. A^2=1+2sinxcosx`
Now, `sin^4+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x`
`=1-2sin^2cos^2x`
`=1-2((A^2-1)/2)^2`
`=1-((A^2-1)^2)/2`
`=(2-(A^4-2A^2+1))/2`
`=(1+2A^2-A^4)/2`
`=1/2+A^2-1/2A^4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of 4sin^(2)x+4cos^(2)x .

Find the range of f(x)=cos^4x+sin^2x-1 .

Evaluate: intdx/(sin^4x + cos^4x)

intdx/(sin^4x+cos^4x)

Evaluate: int1/(sin^4x+cos^4x)dx

Find the maximum and minimum value of 6sinx cosx +4cos2x

cos 4x = sin 3x

The function f(x)=sin^4x+cos^4x increasing if :

The maximum value of (4 sin ^(2)x + 3 cos ^(2) x) is-

Find the derivatives w.r.t. x : sin 4x cos x