Home
Class 12
MATHS
If x=(sin^3p)/(cos^2p),y=(cos^3p)/(sinp)...

If `x=(sin^3p)/(cos^2p),y=(cos^3p)/(sinp)` and `sinp+cosp=1/2` then find the value of `x+ydot`

Text Solution

Verified by Experts

`x+y=(sin^5P+cos^5P)/(cos^2P sin^2P)`
Now, `sin^5P+cos^5P=(sinP+cosP)(sin^4P-sin^3PcosP+sin^2Pcos^2P-sinPcos^3P+cos^4P)`
`=(sinP+cosP)[(sin^4P+cos^4P)-sinPcosP(sin^2P+cos^2P)+sin^2Pcos^2P]`
`=(sinP+cosP)[1-2sin^2Pcos^2P-sinPcosP+sin^2Pcos^2P]`
`=(sinP+cosP)[1-sin^2Pcos^2P-sinPcosP]`
Now, `sinP+cosP=1/2`
`rArr1+2sinPcosP=1/4`
`rArr sinPcosP=-3/8`
Using these values, we get
`x+y=(1/2[1-9/64+3/8])/(9/64)`
`=79/18`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

If x=(sin^3P)/cos^2P,y=cos^3P/sin^2P" and " sinP+cosP=1/2 then find the value of x + y.

If P(A)=(2)/(3),P(B)=(1)/(2)" and "P(A capB)=(1)/(2) ,then find the value of P(AcapB^c) .

If p(x)=sinx(sin^3x+3)+cosx(cos^3x+4)+(1/2)sin^2 2x+5, then find the range of p(x)dot

y=sin^(-1)(x/2)+cos^(-1)(x/2) then find the value of [dy/dx]_(x=1)

If cos x + cos y = 2, "then the value of" sin(x + y) is-

If x= 3p and y=(2p)/5+1 , then find the value of p for which x = 5y.

If P(A)=2/3,P(B)=1/2 and P(AnnB)=1/6 then find the value of P(AnnB^C) .

If y = cos^2(45^@+x)+(sin x - cos x)^2 , then find the maximum and minimum value of y.

In A B C Prove that cos^2A/2+cos^2B/2+cos^2C/2lt=9/4dot If cos^2A/2+cos^2B/2+cos^2C/2=y(x^2+1/(x^2)) then find the maximum value of ydot

If x = sin theta and y = cos p theta , p is constant, then find the value of (1-x^2) y_2 - xy_1