Home
Class 12
MATHS
If (sinA)/(sinB)=(sqrt(3))/2 and (cosA)/...

If `(sinA)/(sinB)=(sqrt(3))/2 and (cosA)/(cosB)=(sqrt(5))/2, 0 < A, B < pi/2,` then `tanA+tanB` is equal to

Text Solution

Verified by Experts

Given `sinA/sinB=sqrt3/2" and " cosA/cosB=sqrt5/2,0ltA,Bltpi//2`
On dividing, we get
`tanA=sqrt3/sqrt5tanB …(i)`
Multiplying `(sinAcosA)/(sinBcosB)=sqrt15/4`
`rArr(tanA.sec^2B)/(tanA.sec^2A)=sqrt15/4`
or `sqrt3/sqrt5((1+tan^2B))/((1+tan^2A))=sqrt15/4" [using(i)]"`
or `4+4tan^2B=5+5tan^2A`
or `-1+4tan^2B=5xx3/5tan^2B`
or `tanB=pm1`
or `tanB=1 ( :'0ltBltpi/2)`
Now, `tanA+tanB =sqrt3/sqrt5+1=(sqrt3+sqrt5)/sqrt5`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, sinA+sinB+sinC=1+ sqrt2 and cosA+cosB+cosC= sqrt2 . The triangle is

If (1+sinA)( 1+sinB)(1+sinC) = (1-sinA)(1-sinB)(1-sinC), then prove that the value of each side = +-cos A cosB cosC ,

In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB sinC is equal to (a) 2/(sqrt(5)) (b) (2sqrt(5))/7 (2sqrt(5))/9 (d) 2/(3sqrt(5))

Which of the following is the value of sin 27^0-cos 27^0? (a) -(sqrt(3-sqrt(5)))/2 (b) (sqrt(5-sqrt(5)))/2 (c) -(sqrt(5)-1)/(2sqrt(2)) (d) none of these

If sinA=sinB and cosA=cosB , then prove that sin((A-B)/2)=0

Show that ((sinA+sinB)/(cosA+cosB))^(n) + ((cosA-cosB)/(sinA-sinB))^(n) = 2 "tan"^(n) (A+B)/2 when n is an even integer, 0, when n is an odd integer.

Prove that (sinA+sinB)/(cosA+cosB)=tan((A+B)/2)

prove that, ((cos A + cos B)/(sin A - sin B))^(n) + ((sinA+sinB)/(cos A - cosB))^(n) = 2 "cot" ^(n) (A-B)/2 or 0 accordingly as n an even or odd integer.

Given A=[(sqrt(3),1,-1),(2,3,0)] and B=[(2,sqrt(5),1),(-2,3,(1)/(2))] , find A+B

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0