Home
Class 12
MATHS
Find the minimum value of 16tan^2theta+9...

Find the minimum value of `16tan^2theta+9cot^2theta`

Text Solution

Verified by Experts

The correct Answer is:
12

`9tan^2theta+4cot^2theta=(3tantheta -2cottheta)^2+12`
Hence, the minimum value is 12.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of (9 tan^2 theta+4 cot^2 theta) when 0^@lethetale90^@ .

Find the minimum value of sec^2theta +cos^2theta

Find the minimum value of cos^2theta +sec^2theta .

If 0lttheta lt90^@ then minimum value of 9tan^2theta+4cot^2theta is

Find the minimum value of Cos^2theta+sec^2theta

tan5theta + cot2theta=0

Find the minimum value of cos^4 theta+sin^2 theta .

Find the minimum value of 2^(sin^2 theta) + 2^(cos^2 theta) .

Minimum value of (16 tan ^(2) theta +25 cot ^(2) theta) is-

If 0^@ lt theta lt 90^@ , then find the least value of ( 9 tan^2 theta + 4 cot^2 theta ).