Home
Class 12
MATHS
Find the minimum value of the function ...

Find the minimum value of the function
`f(x)=(1+sinx)(1+cosx),AAx inR`.

A

A. 0

B

B. - 1

C

C. - 2

D

D. None of These

Text Solution

Verified by Experts

The correct Answer is:
0

Since `0le1+sinxle2" and "0le+cosxle2`,
minium value of f(x) is 0, when any one of `(1+sinx)" or "(1+cosx)` is zero.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=2|x-1|+|x-2| is

The minimum value of the function f(x)=2|x-1|+|x-2| is -

Find the minimum value of the function f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x

Find the domain of the function f(x)=1/(1+2sinx)

Find the integrals of the functions (cosx-sinx)/(1+sin2x)

Find the absolute maximum and minimum values of the function f given by f(x) = cos^(2)x+sinx, x in [ 0,pi]

Integrate the functions (sinx)/(1+cosx)

Find the maximum and the minimum values, if any, of the function given by f(x) = x,x in (0,1)

The extremum values of the function f(x)-1/(sinx+4)-1/(cosx-4) where x inR is

The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x) whenever it is defined is