Home
Class 12
MATHS
Let us consider the equation cos^4x/a xa...

Let us consider the equation cos^4x/a xa+sin4xb=1a+b,x∈[0,π2],a,b>0 the value of sin8xb3+cos8xa3 is

A

`sin^4x/b=cos^4x/a`

B

`sinx/a=cosx/b`

C

`sin^4x/b^2=cos^4x/a^2`

D

`sin^2x/a=cos^2x/b`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `cos^4x/a+sin^4x/b=1/(a+b)=(cos^2x+sin^2x)/(a+b)`
`rArr cos^2x(cos^2x/a-1/(a+b))=sin^2x(1/(a+b)-sin^2x/b)`
`rArrcos^2x((bcos^2x-asin^2x)/(a(a+b)))=sin^2x((bcos^2x-asin^2x)/(b(a+b)))`
`rArrcos^2x/a=sin^2x/b`
`rArr(1-sin^2x)/a=sin^2x/b`
`rArr sin^2x=b/(a+b)and cos^2x=a/(a+b)`
`:. sin^8x/b^3+cos^8x/a^3=b^3/(b^3(a+b)^4)+a^4/(a^3(a+b)^4)=1/((a+b)^3)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

Let us consider the equation cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0 the value of sin^8x/b^3+cos^8x/a^3 is

Let us consider the equation cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0 The value of sin^2x in terms of a and b is

Knowledge Check

  • If sin x + sin ^(2) x=1 then the value of (cos ^(8) x+2 cos ^(6)x +cos ^(4) x) is-

    A
    2
    B
    1
    C
    0
    D
    4
  • Similar Questions

    Explore conceptually related problems

    Solve the equation sin^3x.cos3x+cos^3x.sin3x+3/8=0

    Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

    The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for

    Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the equation a x^3+b x^2+c x-c_1=0, then the value of (b-a-c) is_________

    If sin^3xcos3x+cos^3xsin3x=3/8, then the value of 8sin4x is__

    The equation cos^8x+bcos^4x+1=0 will have a solution if b belongs to

    Number of roots of the equation (3+cos"x")^2=4-2sin^8x ,x in [0,5pi]a r e _________