Home
Class 12
MATHS
alpha,beta,gamma and delta are angle in ...

`alpha,beta,gamma and delta` are angle in I, II, III and IV quadrants, respectively and none of them is an integral multiple of `pi/2dot` They form an increasing arithmetic progression. Which of the following holds? `cos(alpha+delta)>0` `cos(alpha+delta)=0` `cos(alpha+delta)<0` `cos(alpha+delta)>0orcos(alpha+delta)<0` Which of the following does not hold? `sin(beta+gamma)=sin(alpha+delta)` `sin(beta-gamma)="sin"(alpha-delta)` `sin(alpha-beta)="tan"(beta-delta)` `sin(alpha+gamma)=cos2beta)` If `alpha+beta+gamma+delta=thetaa n dalpha=70^0,` then `400^0

A

`sin(beta+gamma)=sin(alpha+delta)`

B

`sin(beta-gamma)=sin(alpha-delta)`

C

`tan2(alpha+beta)=tan(beta+delta)`

D

`cos(alpha+gamma)=cos2beta`

Text Solution

Verified by Experts

The correct Answer is:
B

`0ltalphalt90^@,90^@ltbetalt180^@`
`180^@ltgammalt270^@,270^@ltdeltalt360^@`
`rArrgammalt270^@ltalpha+deltalt450^@`
`rArr alpha+delta` lies in the I or IV quadrant and cosine in both is positive.
If d is the common ratio of theA.P., then
`beta=alpha+d,gamma=alpha+2d,delta=alpha+3d`
`rArr beta+gamma=alpha+delta,2(alpha-beta)=-2d=beta-delta`
`and alpha+gamma=2beta`,
Now, `beta-gamma=-d,alpha-delta=-3d`
`270^@ltdeltalt360^@`
`rArr 270^@ltalpha+3dlt360^@`
`rArr 200^@lt3dlt290^@ ( :. alpha=70^@)`
`rArr400^@lt+6d,580^@`
`rArr 680^@lt4alpha+6dlt860^@`
`680^@ lttheta lt 860^@`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

alpha,beta,gammaand delta are angles in I,II,II and IV quadrants, respectively and none of them is an integral multiple of pi//2 . They form an increasing arithmetic progression. Which of the following does not hold?

Find the sum to n terms of the following series: cos alpha + cos (pi - alpha) + cos (2pi + alpha) + .......(0 < alpha < (pi)/2) .

In Delta ABC , prove that c cos (A - alpha) + a cos (C + alpha) = b cos alpha

The three sides of a right-angled triangle are in G.P (geometric progression). If the two acute angles be alpha and beta , then tan alpha and tan beta are

int dx/(1-cos alpha cos x )(0 lt int dx/(1-cos alpha cos x )(0 le alpha le pi/2) alpha le pi/2)

If 0lt betalt alpha lt(pi/4),cos(alpha+beta)=3/5 and cos(alpha-beta)=4/5 then find the avlue of sin 2 alpha

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If 0 lt alpha lt (pi)/(2) and sin alpha + cos alpha = sqrt2, then the value of cos 3 alpha is-

If " "cos(alpha - beta) + 1 = 0," show that ", cosalpha + cos beta = 0 " and " sin alpha + sin beta = 0.

If the distances of the vertices of a triangle =ABC from the points of contacts of the incercle with sides are alpha,betaa n dgamma then prove that r^2=(alphabetagamma)/(alpha+beta+gamma)