Home
Class 12
MATHS
In DeltaABC,BC=1,sin.(A)/2=x1,sin.(B)/2=...

In `DeltaABC,BC=1,sin.(A)/2=x_1,sin.(B)/2=x_2,cos.(A)/2=x_3andcos.(B)/2=x_4" with "(x_1/x_2)^2007-(x_3/x_4)^2006=0`
If `angleA=90^@`, then area of `DeltaABC` is

A

`1/2`

B

1

C

2

D

can't be determined

Text Solution

Verified by Experts

The correct Answer is:
B

In given `DeltaABC" both " A/2and B/2"lie strictly in "(0,pi/2)and sin x " always increasing in "(0,pi/2)` whereas cos x is always decreasing in `(0,pi/2)`.
So, if `A/2ltB/2`
`rArr sin(A)/2gt sin(B)/2`
`or x_1gtx_2`
`and x_3ltx_4`
`or 1/x^3gt1/x^4`
So, `x_1^2007x_4^2006=x_2^2007x_3^2006` is not valid.
Similarly for `A/2ltB/2`
`rArr sin(A)/2sin(B)/2`
`rArr x_1ltx_2`
`and 1/x^3lt1/x^4`
For this also `x_1^2007x_4^2006=x_2^2007x_3^2006` is not valid.
So,`(x_1/x_2)^2007-(x_3/x_4)^2006=0" is possible only when " A/2=B/2`.
`rArr x_1=x_2and 1/x_3=1/x_4`
Hence, `DeltaABC` is isosceles with `angleABC=angleCAB`.
`rArr BC=AC=1"unit"`
if `angleA=90^@`
Area, `A=1/2BCxxAC=1/2" sq. units"`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC, if BC is unity, sin(A/2)=x_1,sin(B/2)=x_2, cos(A/2)=x_3,cos(B/2)=x_4 with ((x_1)/x_2)^2007-((x_3)/x_4)^2007=0, then the length of ACis .......

Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x . intg(x)dx =

Evaluate int(cos2x sin4x dx)/(cos^(4)x(1+cos^(2)2x))

If f(x)=sin^2x+sin^2(x+pi/3)+cos x.cos(x+pi/3) and g(5/4)=1 , then

int_(0)^(2)((x-1)^(2)sin(x-1) dx)/((x-1)^(2)+cos(x-1))

sin 3x + sin 2x - sinx = 4sin x cos "" x/2 cos "" (3x)/(2)

Let f(x)=sin^(4)x-cos^(4)xandg(x)=1-2sin^(2)xcos^(2)x . int_(0)^((pi)/(4))(f(x))/(g(x))dx =

If int (cos^(4)x)/(sin^(2)x) dx = - k (x/2 + 1/12 sin 2x + 1/3 cot x) + c , then the value of k is -

Prove that, sin^(6)x + cos^(6)x = 1-3/4 sin^(2) 2x.